The ∂-neumann Problem in the Sobolev Topology
نویسندگان
چکیده
Here, and throughout the paper, we useD to denote the α-order derivative, where α is a multi-index and we are using standard multi-index notation. Moreover, γα := |α|!/α! denotes the polynomial coefficient. [The naturality of this choice of the Sobolev inner product will be pointed out and discussed below.] We define the Sobolev space W (Ω) to be the closure of C(Ω̄) with respect to the above inner product. We denote by W s (0,q)(Ω) the space of (0, q) forms whose coefficients are in W (Ω). If φ = ∑ |J |=q φJdz̄ J and ψ = ∑ |J |=q ψJdz̄ J , then the inner product in W s (0,q)(Ω) is defined by
منابع مشابه
Approximate solution of fourth order differential equation in Neumann problem
Generalized solution on Neumann problem of the fourth order ordinary differential equation in space $W^2_alpha(0,b)$ has been discussed, we obtain the condition on B.V.P when the solution is in classical form. Formulation of Quintic Spline Function has been derived and the consistency relations are given.Numerical method,based on Quintic spline approximation has been developed. Spline solution ...
متن کاملHodge Theory in the Sobolev Topology for the De Rham Complex on a Smoothly Bounded Domain in Euclidean Space
The Hodge theory of the de Rham complex in the setting of the Sobolev topology is studied. As a result, a new elliptic boundaryvalue problem is obtained. Next, the Hodge theory of the @-Neumann problem in the Sobolev topology is studied. A new @-Neumann boundary condition is obtained, and the corresponding subelliptic estimate derived. The classical Hodge theory on a domain in R N+1 (or, more g...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملGlobal attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$
We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions $ u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...
متن کامل